
High WaterMark PVS Problem

George W. Dinolt

August 9, 2004

1 Description of the Model

The figure below is an example of the High Water Mark Security Model. The model consisist
of the sets Subjects, Objects and Labels. Associated with each Object is a Label.

Each action of the system consists of adding an Access to the system. The basic idea
is that a subject can read anything, but once it has read something, it can only write at or
above the label of all the Objects it has ever read.

We model this by associating a “sequence number” with each access. We assumme that
if two accesses have the same sequence number they are the identical (the same). If they
have different sequence numbers then the one with the lower number “happened” first. So,
if a subject wants to write to an object, then the label of the object must dominate (be
greater than or equal to) the label of all the objects it has read, i.e. the objects associated
with all the accesses it has made with lower sequence numbers.

We define the transform function (the state transition function) in such a way that it
guarantees that the sequence numbers are monotonically increasing.1

2 What you need to do

As usual, you will be able to find the specification on the Web Pages. You should be able to
down-load-it from there. You should try to convince yourself that the specification actually
does capture the intent of the policy above. I have added one lemma to try and make it
clear that we are “doing the right thing.”

There are 3 LEMMA’s, transform_secure, empty_is_secure, and noWriteDownSubject.
You should hand in proofs only for empty_is_secure and noWriteDownSubject.

A proof of transform_secure will give you extra credit. It is fairly long and complicated.

1If you don’t know what that means, look it up.

1



3 The High Water Mark Specification

HighWaterMark[Subjects: type+, Objects: type+, Labels:
type from nat]: theory

begin

lb(ob: Objects): Labels

Mode: type = {read, write}

Accesses: type =

[# s: Subjects,
ob: Objects,
m: Mode,
seqnumber: nat #]

State: type = setof[Accesses]

st: var State

st?(st): bool =
∀ (xa, xb: Accesses):

st(xa) ∧ st(xb) ⇒
if xa‘seqnumber = xb‘seqnumber

then xa = xb
else xa‘s = xb‘s ∧

xa‘seqnumber < xb‘seqnumber ∧ xb‘m = write
⇒ lb(xa‘ob) ≤ lb(xb‘ob)

endif

transform(a: Accesses, st: State): State =
if ∀ (e: Accesses):

st(e) ⇒ e‘seqnumber < a‘seqnumber
then cond (¬ (∃ (x: Accesses): st(x) ∧ x‘s = a‘s))

→ (st ∪ {a}),
a‘m = read → (st ∪ {a}),
(∀ (y: Accesses):

st(y)
∧
y‘s = a‘s
∧
a‘m = write ∧ lb(a‘ob) ≥ lb(y‘ob))
→ (st ∪ {a}),

2



else → st
endcond

else st
endif

transform secure: lemma
∀ (a: Accesses, st: State):

st?(st) ⇒
st?(transform(a, st))

empty is secure: lemma
st?(emptyset)

noWriteDownSubject: lemma
∀ (st: State, a, b: Accesses):

st?(st) ∧
(a ∈ st) ∧
(b ∈ st) ∧
a‘m = read ∧
b‘m = write ∧
a‘s = b‘s ∧ a‘seqnumber < b‘seqnumber

⇒ lb(a‘ob) ≤ lb(b‘ob)

end HighWaterMark

3


